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Turbulent flow between a rotating and a stationary disk is studied. Besides its fun-
damental importance as a three-dimensional prototype flow, such flow fields are fre-
quently encountered in rotor–stator configurations in turbomachinery applications. A
direct numerical simulation is therefore performed by integrating the time-dependent
Navier–Stokes equations until a statistically steady state is reached and with the
aim of providing both long-time statistics and an exposition of coherent structures
obtained by conditional sampling. The simulated flow has local Reynolds number
r2ω/ν = 4× 105 and local gap ratio s/r = 0.02, where ω is the angular velocity of the
rotating disk, r the radial distance from the axis of rotation, ν the kinematic viscosity
of the fluid, and s the gap width.

The three components of the mean velocity vector and the six independent Reynolds
stresses are compared with experimental measurements in a rotor–stator flow config-
uration. In the numerically generated flow field, the structural parameter a1 (i.e. the
ratio of the magnitude of the shear stress vector to twice the mean turbulent kinetic
energy) is lower near the two disks than in two-dimensional boundary layers. This
characteristic feature is typical for three-dimensional boundary layers, and so are the
misalignment between the shear stress vector and the mean velocity gradient vector,
although the degree of misalignment turns out to be smaller in the present flow than
in unsteady three-dimensional boundary layer flow. It is also observed that the wall
friction at the rotating disk is substantially higher than at the stationary disk.

Coherent structures near the disks are identified by means of the λ2 vortex criterion
in order to provide sufficient information to resolve a controversy regarding the roles
played by sweeps and ejections in shear stress production. An ensemble average of
the detected structures reveals that the coherent structures in the rotor–stator flow are
similar to the ones found in two-dimensional flows. It is shown, however, that the three-
dimensionality of the mean flow reduces the inter-vortical alignment and the tendency
of structures of opposite sense of rotation to overlap. The coherent structures near the
disks generate weaker sweeps (i.e. quadrant 4 events) than structures in conventional
two-dimensional boundary layers. This reduction in the quadrant 4 contribution from
the coherent structures is believed to explain the reduced efficiency of the mean flow
in producing Reynolds shear stress.

1. Introduction
The flow between a rotating and a fixed parallel disk has received much attention

due to its relevance to applications in turbomachinery, where the two-disk flow serves
as a model problem for rotor–stator flows. This flow is also known to be one of very
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few examples of three-dimensional flows that in the laminar case are described by
exact solutions to the Navier–Stokes equations. Three-dimensional boundary layers
are commonly found in engineering flows, making determining and understanding
the behaviour of these boundary layers important. The flow between rotating disks
is one of the simplest cases where the boundary layers are three-dimensional and this
flow is therefore well suited for studying the effects of mean-flow three-dimensionality
on the turbulence and its structures.

1.1. Rotor–stator flows

Daily & Nece (1960) studied experimentally an enclosed rotor–stator flow and identi-
fied four flow regimes: two laminar and two turbulent, each having either merged or
separated boundary layers. (Here and in the following the term ‘separated’ boundary
layers means that the boundary layers near the two disks are separated from each
other by an inviscid rotating core.) The different regimes were found to depend on the
rotational Reynolds number ReR = R2ω/ν and the gap ratio GR = s/R, where R is
the radius of the disks, ω the angular frequency of the rotating disk, ν the kinematic
viscosity and s the axial distance between the disks.

The laminar flow between unshrouded disks is described by similarity equations
originating from the von Kármán similarity principle. Von Kármán (1921) considered
an infinite disk rotating in an unbounded viscous fluid and reduced the Navier–
Stokes equations to a pair of nonlinear ordinary differential equations by using a
similarity principle. Batchelor (1951) generalized the original one-disk problem to
include a second parallel disk and argued qualitatively that for the case with only
one disk rotating, boundary layers would form at both disks and in the core the
fluid would rotate. In contrast, Stewartson (1953) claimed that there would only be a
boundary layer near the rotating disk, and the fluid in the core would not rotate. The
controversy between Batchelor and Stewartson has triggered many investigations on
this flow, ranging from rigorous mathematical analysis to numerical solutions and
experiments. Zandbergen & Dijkstra (1987) provide a review on these investigations
showing that the similarity equations do not generally have unique solutions. The
two qualitatively different solutions advocated by Batchelor and Stewartson can thus
both be found from the similarity equations. For laminar flow between finite disks,
Brady & Durlofsky (1987) have shown that closed-end flows resemble the Batchelor
solution, while open-end flows resemble the Stewartson solution.

In real situations the flow between large disks will undergo a transition to turbulence
when the local Reynolds number Rer = r2ω/ν, based on the radial coordinate r, is
sufficiently large. Cooper & Reshotko (1975) pointed out that near the axis of
rotation the flow is laminar and the boundary layer thickness is approximately
constant. If the gap width is large the boundary layers are separated. After transition
to turbulence the separated boundary layers thicken and eventually merge when the
local gap ratio Gr = s/r is sufficiently small. The accurate radial position of transition
depends both on Rer and the distance between the disks. For one disk rotating in
a quiescent environment the flow is fully turbulent at a local rotational Reynolds
number Rer = 3.9×105, according to Kobayashi (1994). For the confined rotor–stator
configurations the transition occurs at lower Reynolds numbers. Owen & Rogers
(1989) concluded, based on the experimental data by Daily & Nece (1960), that
the transition was completed at Rer ≈ 1.5 × 105 for gap ratios Gr larger than 0.04.
For smaller gap ratios (Gr . 0.04) the transition to turbulence takes place at lower
Reynolds numbers. In an experiment with separated boundary layers (GR = 0.08), Itoh
et al. (1992) found that the rotor-side boundary layer was laminar for Rer = 1.6×105,
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turbulent for Rer = 3.6× 105 and fully turbulent for Rer = 4.6× 105. The boundary
layer near the stator was found to be turbulent at lower local Reynolds numbers.
Between more closely spaced disks the transition takes place at lower Rer , as can be
seen in Itoh (1995). Cheah et al. (1994) also found that near the stationary disk the
boundary layer was turbulent at lower Reynolds numbers than the boundary layer
near the rotating disk. The differences in the transition Reynolds numbers near the
two disks were explained by Itoh et al. (1992) as a consequence of the flow being
decelerated near the stator and accelerated near the rotor. Cheah et al. (1994) argued
that near the rotor the transition is delayed since the fluid arrives from the laminar
region near the axis of rotation, while the flow near the stator arrives from a turbulent
region further out from the axis and therefore remains turbulent at smaller radii.

1.2. Three-dimensional turbulent boundary layers

A three-dimensional turbulent boundary layer (3DTBL) is a boundary layer where
the mean velocity vector changes direction with the distance from the wall, while the
direction of the mean velocity in a two-dimensional turbulent boundary (2DTBL)
remains constant. 3DTBLs are commonly found in engineering applications such as
over swept wings, in curved ducts and in rotating machinery. Although the turbulence
statistics and structures are similar for a 3D- and 2DTBL, there are some important
differences. The Reynolds shear stress vector is the vector in the plane parallel to
the wall with components −u′v′ and −w′v′, expressed in a coordinate system with y
being the wall-normal direction and v the corresponding velocity component. In a
two-dimensional boundary layer the shear stress vector is aligned with the velocity
gradient vector with components ∂U/∂y and ∂W/∂y. In a 3DTBL, on the other
hand, this is not generally the case (Bradshaw & Pontikos 1985). Especially in
non-equilibrium 3DTBLs the stress–strain lag angle can be large (e.g. Bradshaw
& Pontikos 1985; Moin et al. 1990) resulting in poor performance of turbulence
models based on the isotropic eddy-viscosity hypothesis. Another noticeable change
caused by the three-dimensionality of the mean flow is that the magnitude τ of the
shear stress vector relative to the turbulent kinetic energy k is reduced. This ratio is
commonly expressed through the structural parameter a1 = τ/2k. The reduction in
a1 is an indication that the turbulence is less efficient in extracting energy from the
mean flow than in a 2DTBL. For most cases considered in the review by Johnston
& Flack (1996), a1 was found to be reduced below the generally accepted value 0.15
for conventional 2DTBLs. The so-called ‘Trondheim Trials’ (Fanneløp & Krogstad
1975) showed that these changes in turbulence structure influence the performance of
turbulence models applied to 3DTBLs. Most experimental studies on 3DTBLs have
additional complicating effects such as streamwise pressure gradients, wall curvature
or system rotation. Spalart & Watmuff (1993) and Coleman, Kim & Spalart (2000),
e.g., showed that an adverse pressure gradient also reduced the level of a1. It can
therefore be difficult to distinguish between the three-dimensionality of the mean flow
and these complicating effects when discussing the reasons for the observed changes
in the turbulence. 3DTBLs have been simulated numerically by Spalart (1989), Moin
et al. (1990), Sendstad & Moin (1991), Coleman, Ferziger & Spalart (1990), Coleman,
Kim & Spalart (1996), Coleman et al. (2000), Le, Coleman & Kim (1999) and Wu &
Squires (1999).

The effect of the mean-flow three-dimensionality on the turbulent Reynolds stresses
has motivated research on quasi-coherent structures in the near-wall region. It is
believed that the three-dimensionality modifies the coherent vorticity structures found
in the two-dimensional boundary layers. The coherent structures in the near-wall
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Figure 1. Streamwise vortex labels as defined by Shizawa & Eaton (1992).

regions of 2DTBLs consist of, as described by Robinson (1991), streamwise streaks of
high- and low-speed fluid together with quasi-streamwise vortices. Jeong et al. (1997)
further refined the picture of the coherent structures in the region y+ 6 60 by directly
extracting the vortical structures by means of the vortex definition proposed by Jeong
& Hussain (1995). Their coherent structures were elongated quasi-streamwise vortices
inclined in the vertical plane and tilted in the horizontal plane. The mutual interaction
of the vortices produced long regions of high- and low-speed streaks. These vortices
were responsible for most of the turbulence production.

Investigations on structural changes caused by the three-dimensionality have fo-
cused on the strength and symmetry of the vortices of opposite sign, as shown in the
review by Eaton (1995) on experimental studies of coherent structures in 3DTBLs.
In the following, the nomenclature by Shizawa & Eaton (1992) is adopted to label
the vortices of opposite sign. A Case 1 vortex has induced near-wall velocity in the
direction of the crossflow (see figure 1), while Case 2 has oppositely directed velocity
near the wall. Bradshaw & Pontikos (1985), who measured the turbulence on a swept
wing, argued that the reduction in a1 is caused by the spanwise shear that tilts the
large eddies (initially developed in a 2DTBL) sideways and, hence, reduces their
efficiency in producing shear stress. Anderson & Eaton (1989) studied the skewed
boundary layer caused by an upstream-facing wedge. They suggested that the ob-
served stabilization of the turbulence may be caused by a reduction in the number
of localized vortices having the opposite sign of vorticity to that of the streamwise
vorticity associated with the mean flow.

Shizawa & Eaton (1992) used a vortex generator to embed a vortex in the boundary
layer approaching a wedge. The generated vortices were substantially greater than the
naturally occurring vortices found in turbulent boundary layers. The vortices decayed
faster in the three-dimensional boundary layer than in an equivalent two-dimensional
flow. In addition, Case 1 vortices produced weak ejections while the ejections from
Case 2 vortices were very strong. In contrast, in a study of the boundary layer over
a rotating disk in a quiescent fluid, Littell & Eaton (1994) concluded that Case 1
vortices produced strong ejections and weak sweeps while Case 2 generated stronger
sweeps than ejections. The number of vortices of opposite sign were approximately
equal. Their conclusions were based on two-point conditional correlations that were
asymmetric in the spanwise direction, an asymmetry that is not possible in a 2DTBL.
Chiang & Eaton (1996) used hydrogen bubble visualization to study the structures in
the flow over a rotating disk. They refined the findings of Littell & Eaton (1994) and
concluded that Case 1 and Case 2 vortices were equally likely to produce ejections,
but the ejections caused by Case 1 were stronger than the Case 2 ejections. From
another experiment on the rotating disk Kang, Choi & Yoo (1998) concluded that
the asymmetry in the conditional averages of Littell & Eaton (1994) were not caused
by Reynolds-stress-producing events and the vortical structures were near symmetric
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in the spanwise direction. Flack (1997), in the flow in a curved bend, also found
contrary results to Littell & Eaton (1994). Stress-producing events near the vortices
in the bend were not influenced by the sign of rotation of the vortices. Sendstad &
Moin (1991) studied the fluid particle trajectories near vortices in a two-dimensional
boundary layer which suddenly experiences a spanwise pressure gradient. In general
they supported the conclusions of Littell & Eaton (1994). In a recent simulation of
two-dimensional flow where the wall is suddenly set in motion, Le et al. (1999) also
found that the imposed three-dimensionality led to asymmetry between the vortices
of opposite sign.

It is possible that some of the discrepancies observed in these structural studies
can be explained by differences in the origin of the three-dimensionality. Structures in
an originally two-dimensional boundary layer which experiences a sudden crossflow
may be different from the structures in a boundary layer which is three-dimensional
from its laminar origin, i.e. like on the rotating disk. The discrepancies also make
it evident that further investigations are needed in order to shed more light on
flow phenomena associated with 3DTBLs and, in particular, to settle the prevailing
controversy regarding the role played by the near-wall vortical structures.

In this paper we report on a direct numerical simulation performed to study the
turbulent flow between ‘infinite’ rotating and stationary disks. The main motivation
for our investigation is to explore the modification of the turbulence due to the three-
dimensionality of the mean flow. In order to enhance the physical understanding
of how and why the turbulence is affected, not are only conventional turbulence
statistics needed, but also ensemble averages of coherent flow structures become of
crucial importance. First, however, the numerical simulation code, boundary condition
treatment as well as choice of parameters for the simulation are described in § 2.
Comparisons between long-time statistics from the simulation and experimental data
from a laboratory study by Itoh (1995) are made in § 3. Since turbulent plane Couette
flow may be considered as the two-dimensional analogue of the rotating disk flow,
statistical data are also compared with results from a simulation by Bech et al. (1995).
In § 4 the focus is on the coherent flow structures, and finally some conclusions and
closing remarks are provided in § 5.

2. Simulation overview
A direct numerical simulation (DNS) is performed to complement the experimental

studies of flows between a rotating and a stationary disk. As far as the authors are
aware, direct simulations of fully turbulent rotor–stator flows have not been performed
before.

The flow of an incompressible Newtonian fluid between two infinite parallel disks
separated by a distance s (see figure 2) is considered. One disk is stationary, i.e.
non-rotating, while the other disk is rotating with constant angular frequency ω. At
a given radial position r the flow is governed by the four independent parameters
r, s, ω and ν which can be combined in different ways into two non-dimensional
numbers. Here, the local rotational Reynolds number Rer = r2ω/ν and the local gap
ratio Gr = s/r are adopted as independent dimensionless parameters.

2.1. Numerical approach

The Navier–Stokes equations are expressed in cylindrical coordinates (r, θ, z) and
solved on the computational domain represented by solid lines in figure 2. We
consider the angular section ∆θ between the two radial coordinate surfaces r1 and r2.
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Figure 2. Sketch of computational domain and coordinate system.

The rotating disk (rotor) is at z = 0 while the stationary disk (stator) is at z = s;
rm = (r1 + r2)/2 is the radial coordinate in the centre of the computational domain.

The governing equations are discretized using a second-order finite-difference
scheme in cylindrical coordinates. The Poisson equation for pressure is solved by
a multigrid method, see Andersson, Lygren & Kristoffersen (1998) for details. The
flow field is advanced in time by using a fractional-step method and a second-order
Adams–Bashforth time discretization scheme.

In the tangential direction conventional periodic boundary conditions are applied
and at the disks no-slip conditions are imposed. Since the flow is statistically evolving
in the radial direction, full periodicity cannot be used at the coordinate surfaces r1
and r2. We are interested in the fully turbulent flow between the disks and a low gap
ratio. Littell & Eaton (1994), for a single disk, and Itoh et al. (1992), Cheah et al.
(1994) and Itoh (1995), for the two-disk problem, have noticed that the turbulence
statistics vary relatively slowly in the radial direction, except near transition. This
slow variation of the turbulence statistics suggests that quasi-periodic boundary
conditions can be applied between the coordinate surfaces r1 and r2. The boundary
condition treatment adopted in the present study is almost identical to that used in
the large-eddy simulations of the flow over a rotating disk by Wu & Squires (1999,
2000). Their method for generating time-dependent boundary conditions is based
on the scheme Lund, Wu & Squires (1998) have developed for simulating spatially
developing boundary layers. In contrast to the approach by Spalart (1988) in his
simulations of two-dimensional spatially developing boundary layers, the boundary
treatment by Lund et al. (1998) does not involve any coordinate transformation. The
flow field at a downstream location is rescaled and recycled at the inlet. The scheme
of Lund et al. (1998) was simplified by Wu & Squires (2000) when simulating the
flow over a rotating disk. For the rotor–stator flow the only essential modification of
the boundary treatment for one disk is how the global mass conservation is obtained.
The specific steps used in this study are:

1. At the beginning of the time step t+ ∆t the velocity fields are decomposed into
a mean and fluctuating part,

ui(r, θ, z, t) = Ui(r, z) + ui,rms(r, z)ui,P (r, θ, z, t), i = r, θ, z, (2.1)

where Ui denotes the mean velocity components, ui,rms is the root-mean-square of the
turbulence fluctuations and ui,P the fluctuating signal with root-mean-square value
equal to one; ui,P is assumed periodic between r1 and r2. The mean values are averaged
in the tangential direction and in time.

2. Quasi-periodicity is imposed by using ui,P (r, θ, z, t) to generate the velocities at r1
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Figure 3. Velocity profiles from a simulation (lines) and the Batchelor solution of the von Kármán
similarity equations (symbols); laminar flow at Res = 900. Rotating disk at z = 0. ——–, ◦, Uθ/rω;

· · · · · ·, •, Ur/rω; −−−, �, −Uz/(νω)1/2.

and r2 in the following way:

ui(r1, θ, z, t+ ∆t) = Ui(r1, z) + ui,rms(r1, z)ui,P (r → r2, θ, z, t), (2.2)

ui(r2, θ, z, t+ ∆t) = Ui(r2, z) + ui,rms(r2, z)ui,P (r1 ← r, θ, z, t). (2.3)

Here r1 ← r and r → r2 represent radial positions adjacent to the two planes r1 and
r2, respectively.

3. Two different methods for specifying Ui and ui,rms at r1 and r2 have been tested.
First, Ui and ui,rms at r1 and r2 were obtained by linear extrapolation of Ui and ui,rms
at the radial plane r = rm assuming that Uθ , Ur and r.m.s. values are proportional to
r, while Uz is independent of r. Second, Ui and ui,rms at r1 and r2 were calculated by
a linear approximation a0 + a1r, where a0 and a1 were computed in the least-squares
sense from the interior points of Ui and ui,rms. Statistics from the two methods did
not differ significantly. The first method was adopted in the present study.

4. Global mass conservation is obtained by enforcing the radial velocity component
ur to have zero net flux through r1 and r2 at every time step.

The assumptions made in step 3 are supported by experimental findings (e.g. Itoh
1995), but are not necessarily exact. As pointed out by Wu & Squires (2000), the
boundary treatment represents an approximation of the physical problem and may be
regarded as necessary to achieve a feasible computational problem. Since Ui(r, z) and
ui,rms(r, z) are initially unknown, the time-averaging of mean and r.m.s. values used
in the boundary treatment is performed with a weight which decreases exponentially
backwards in time.

As a first test of the boundary condition treatment, we calculated the laminar
flow using different gap ratios and rotational Reynolds numbers. The size of the
computational domain was then 3s×10s× s in the radial, tangential and wall-normal
directions. The grid sizes were up to 32 × 32 × 64 in the corresponding directions.
Initially, the wall-normal and radial velocities were zero and the tangential velocity
varied linearly from the rotating to the stationary disk. All the different test cases were
in very good agreement with the Batchelor solutions of the von Kármán similarity
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uθτs/ν urτs/ν uτs/ν

Rotor side 265.7 182.1 279.3
Stator side 213.5 125.9 219.7

Table 1. Reynolds numbers based on wall friction velocities at the rotating and the stationary
disk. Tangential friction velocity uθτ = (ν∂Uθ/∂z)

1/2, radial friction velocity urτ = (ν∂Ur/∂z)
1/2, total

friction velocity uτ = (u4
θτ + u4

rτ)
1/4.

equations obtained by using a multiple shooting technique. It is noteworthy that
the solution of the similarity equations depends solely on the gap Reynolds number
Res = s2ω/ν. Figure 3 shows that the numerical simulation faithfully reproduces the
rather complicated velocity profiles in the laminar flow at Rerm = r2

mω/ν = 103 and
Res = 900.

2.2. Simulation parameters

The direct numerical simulation of the turbulent rotor–stator flow is performed with a
rotational Reynolds number Rerm = 4× 105 and gap ratio Grm = 0.02. It is possible to
increase Rerm and decrease the gap ratio and still satisfy the resolution requirements for
a DNS of turbulent flows. However, different test simulations showed that by lowering
the gap ratio the size of the radial velocity component decreases, thereby reducing the
mean-flow three-dimensionality. In fact, in the limit g → 0 the three-dimensional flow
between the two disks approaches the plane two-dimensional Couette flow. Since the
primary goal of this study is to investigate three-dimensional effects, the particular
parameter combination Rerm = 4 × 105 and Grm = 0.02 is considered. As far as we
know, the laboratory experiment with parameters closest to these was that performed
recently by Itoh (1995). He measured both mean velocities and all the components of
the full Reynolds stress tensor in the gap between a rotating disk and a cylindrical
casing.

The size of the computational domain is 3.5s× 7s× s in the radial, tangential and
axial directions and the corresponding numbers of grid points are 192 × 192 × 128.
The friction on the rotating disk is generally higher than on the stationary disk. The
reason is that there is a net flow of angular momentum out of the computational
domain. Individual Reynolds numbers based on the friction velocity at the rotating
disk and at the stationary disk can therefore be defined, as listed in table 1. Note
that these Reynolds numbers are based on the whole distance s between the disks,
in contrast to common practice for plane channel flows where it is customary to use
half the distance between the plates. The size of the smallest computational cells was
rm∆θ+×∆r+×∆z+

min ≈ 10×5×0.4 in rotor-side wall units and 8×4×0.3 in stator-side
wall units. In the wall-normal direction the grid is stretched and the maximal ∆z+ is
approximately 4 based on the rotor-side friction velocity.

The initial velocity fields were the laminar-flow (Batchelor) velocity profiles with
random disturbances superimposed. After the time-dependent flow had settled at a
statistically steady state, turbulence statistics were gathered during 2.9 global time
units (i.e. in terms of ω−1) and 1300 and 850 inner time units t∗ = ν/u2

θτ where the
friction velocity is at the rotating and stationary disk, respectively.

Two-point correlation coefficients for the three velocity components near the disks
are given in figure 4. The correlations are small at large separations, indicating that
the circumferential extent of the computational domain is sufficiently large. The
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Figure 4. Two-point correlation coefficients near the rotating (a) and stationary (b) disks. Relative
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Figure 5. One-dimensional energy spectra near the rotating (a) and stationary (b) disks. Relative
distance to the disks is 5 wall units. ——–, Eθθ; · · · · · ·, Err; −−−, Ezz .

correlations decay more slowly to zero at the stator side than at the rotor side
since coherent structures like high- and low-speed streaks scale on wall units and
Reτ = uτs/ν is smaller near the stator, cf. table 1. The corresponding streamwise
energy spectra are shown in figure 5. The energy associated with highest wavenum-
bers is at least five decades lower than the energy content of low-wavenumber
motions.
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3. Mean field and turbulence statistics
The statistical data presented in this section are averaged in both time and in the

homogeneous tangential direction. In addition the data have also been averaged in
the radial direction after first being normalized with either the local disc velocity or
the local friction velocity. After this normalization the resulting turbulence statistics
vary only marginally with the radial position r, thereby justifying the subsequent
averaging also in the radial direction.

Some of the results are compared with experimental data by Itoh (1995) who
considered a pair of enclosed disks, one of which was rotating. The clearance between
the disks was only 4 mm, thus making the gap ratio small. Hot-wire measurements of
the full Reynolds-stress tensor were reported for a local rotational Reynolds number
Rer = 4.6× 105. The local gap ratio was Gr = 0.02, and the measurements were taken
at a radial position r = 0.8R where R is the radius of the disks.

It is also of interest to compare some results from the flow between the two
disks with the two-dimensional counterpart of the rotor–stator flow in order to study
effects of the three-dimensionality on the turbulence. Some of the present statistics
are therefore compared with DNS data of the plane Couette flow by Bech et al.
(1995). The Reynolds number of that flow, based on half the velocity difference and
the half-distance h between the moving planes, was 1300, whereas the wall-friction
Reynolds number was 164.4 (based on 2h and thus comparable with those in table 1).

3.1. Mean field

The profiles of the mean velocities in figure 6(a) show that the tangential velocity
profile is similar to the profile of streamwise velocity in turbulent plane Couette flow.
Whereas the velocity at the channel centre is half the wall velocity in the Couette
flow due to symmetry reasons, the angular frequency of the fluid at z = s/2 is 0.432ω
in the present simulation. Since the mean axial component Uz is negative in the gap
between the disks, and since the tangential velocity is decreasing with the distance
from the rotor, there is a net outflow of angular momentum from the computational
domain, as mentioned in the previous section. To balance this angular momentum
outflow the gradient of the tangential mean velocity is higher near the rotor than at
the stator, thus giving rise to a higher frictional torque at the rotor. The tangential
core velocity is therefore below ωr/2. By assuming an inviscid core rotating with
a constant angular velocity between infinite disks and 1/7-power-law mean velocity
profiles in the boundary layers, Owen & Rogers (1989) found using two different
approaches that the velocity of the core would be 0.426ωr or 0.431ωr, which is
surprisingly close to the 0.432ωr found between the disks in the present study. The
tangential mean velocity in the DNS is in good agreement with the experimental
data from Itoh (1995), especially near the rotating disk. At z = s/2 the tangential
velocity is approximately 0.45ωr in his experiment. In addition to the fact that Itoh
(1995) considered finite disks, some differences in the mean velocity profiles can be a
Reynolds-number effect.

The radial crossflow in figure 6(a) varies continuously across the gap, in contrast
to rotor–stator flows with large clearances. The crossing Ur = 0 is at z/s = 0.469. The
radial component agrees well with Itoh (1995). The axial mean velocity is everywhere
small and negative.

Scaled in wall units the streamwise mean velocities relative to the disks in figure
6(b) follow rather closely the law of the wall. The normalization is based on the
tangential friction velocity uθτ and z+

rel is the relative distance to the nearest disk. In
the same plot, the radial mean velocities are also presented where −Ur is shown near
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Figure 6. (a) Mean velocities in global coordinates. Symbols are from Itoh (1995). ——–, ◦, Uθ/rω;
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Figure 7. Polar plot of Uθ and Ur in the whole gap between the disks from the present simulation
(solid) and the laminar von Kármán solution (dashed). Note that the boundary layer near the
rotating disk is to the right in this plot.

the stator side. The maximum crossflow is at z+
rel = 15 near the rotor and z+

rel = 22
near the stator. Several authors (e.g. Itoh et al. 1992; Littell & Eaton 1994; Wu &
Squires 1997) have found that the peak in the crossflow in a 3DTBL does not scale
in inner variables. In wall units the location of the peak is typically further out from
the wall when the Reynolds number is larger.

A polar plot of the tangential and radial velocity components is shown in figure 7.
The laminar solution obtained from the von Kármán similarity equations (Batchelor
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solution) is included in this plot. The turbulent flow differs significantly from the
laminar flow. In the turbulent case, the boundary layers near the rotor and stator
both exhibit the characteristic triangular form found in 3DTBLs. This polar plot
moreover indicates that the three-dimensionality is strongest near the rotor. However,
to compare the amount of three-dimensionality in the two boundary layers, it is more
appropriate to relate the crossflow to the tangential ‘free-stream’ velocity relative
to the respective disks. The relative velocity for the rotating disk at z = s/2 is
Uθ,rel = ωr − 0.432ωr = 0.568ωr and for the stationary disk Uθ,rel = 0.432ωr. The
peak of the crossflow distribution turns out to be approximately 16% of Uθ,rel near
both disks, thus indicating that the strength of the three-dimensionality is almost the
same in the rotor and stator boundary layers. In the 3DTBL with rotating free-stream
velocity (Spalart 1989) and in the turbulent Ekman layer (Coleman et al. 1990), the
peak value of the crossflow was about 22% of the free-stream velocity. In rotating
disk flow, the crossflow was about 11% of the local disk velocity (Littell & Eaton
1994).

3.2. Turbulence field

All six Reynolds stresses are given in figure 8. They are normalized with the wall
friction velocity uτ (see table 1). The data from Itoh (1995) are included in the same
plots. The general trend is that the experimental and numerical data fit quite well for
the boundary layer near the stationary disk. Near the rotating disk the experimental
values are generally lower than the simulated ones.†

One reason for the discrepancies could simply be that the flow between infinite
disks is considered in the DNS, while Itoh (1995) studied a case with shrouded disks.
When the stresses are not normalized the turbulence intensity is higher near the rotor
than the stator in the simulation. In the experiment this dimensional intensity is
almost the same near the two disks. This can be a consequence of increased mixing
between the boundary layers due to the presence of the fixed outer shroud. Near the
rotating disk the radial crossflow transports fluid outwards from smaller radii where
the flow is laminar. It is possible that this could lead to lower turbulence intensities.
The boundary condition treatment described in § 2.1 would not capture this effect.
Finally, the differences between the experiment and DNS could partly be ascribed to
the difference in Reynolds numbers.

The tangential turbulent intensity has a distinct maximum at z+
rel = 14 near the

rotating disk and at z+
rel = 13 near the stationary disk. The other intensities, except

u′r near the rotor, increase monotonically from the wall to an almost constant value
away from the disks; u′r near the rotor has a maximum at z+

rel ≈ 40. The primary

shear stress u′θu′z attains maxima at z+
rel = 29 near the rotor and z+

rel = 31 near the
stator. In 2DTBLs the equivalent to the shear stress u′ru′z is zero. Near the disks, this
stress component has a negative dip due to the change of sign of ∂Ur/∂z. The third

shear stress u′θu′r is usually neglected in the boundary layer equations where u′θu′r is
differentiated only with respect to θ and r, i.e. in directions with no or only modest
variation of statistical quantities. The wall-normal derivative of u′θu′z is typically two

orders of magnitude larger than the spanwise derivative of u′θu′r near the walls, thereby

indicating that u′θu′r is of negligible importance.
To study structural effects arising from the three-dimensionality of the mean flow,

comparisons are made with plane Couette flow which is the two-dimensional equiv-

† As pointed out by an anonymous reviewer, the peak value 1.7 of the measured u+
θ,rms is

remarkably low compared to conventional turbulent boundary layers.
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Figure 8. Reynolds stresses near the rotating disk (——–, ◦) and the stationary disk (−−−, �).
Symbols are from Itoh (1995). Normalized with uτ.

alent of the rotor–stator flow. In Couette flow θ, r and z represent the streamwise,
spanwise and wall-normal directions, respectively. Figure 9 shows the anisotropy in-
variant map (AIM) for the Reynolds-stress tensor in the rotor–stator boundary layers
and in the DNS of plane Couette flow by Bech et al. (1995). Following Lumley (1978)
the invariants are

II =
1

2
(aiiajj − a2

ii), III =
1

3!
(aiiajjakk − 3aiia

2
jj + 2a3

ii), (3.1)

where aij is the anisotropy tensor of the second moments of the fluctuations:

aij = u′iu′j/2k − δij/3. (3.2)

a2
ii and a3

ii are the traces of a2
ij = aikakj and a3

ij = aikaklalj , respectively. The data in the
AIM are within the region limited by the two lines corresponding to axisymmetric
flow and the straight upper line corresponding to the two-component limit. The
one-dimensional state (outside the diagram) corresponds to large −II and III. Near
the disks the wall-normal fluctuations are damped much more effectively than the
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Figure 9. Anisotropy invariant map (AIM). Each symbol corresponds to a node in the
computational grid. ◦, Rotor side; �, stator side; ×, Couette flow from Bech et al. (1995).
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Figure 10. Root-mean-square vorticity fluctuations normalized by ν/u2
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−−−, stator side; · · · · · ·, Couette flow data from Bech et al. (1995).

fluctuations parallel with the disks, as can be recognized from the points in the AIM
that touch the two-component limit. Fluctuations midway between the disks are fairly
close to the origin of the AIM, which corresponds to isotropic turbulence.

The anisotropy of the fluctuations near the two disks is quite similar. Compared
to the disk flow the Couette flow is locally closer to the one-dimensional state. The
streamwise fluctuations in the Couette flow are therefore relatively more significant
than u′θ in the disk flow. In addition the AIM reveals that the disk flow is shifted
away from the axisymmetric state compared to the plane Couette flow. The disk flow
is also closer to isotropy in the AIM. This could be partly due to the somewhat lower
Reynolds number Reτ in the Couette flow.

The profiles of the root-mean-square vorticity fluctuations are presented in figure
10. The vorticity fluctuations computed by Bech et al. (1995) are also plotted for
comparison. Close to the wall the variation of the three vorticity components is
almost the same near the rotor and the stator and in the Couette flow. Further out
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a surprisingly close agreement between the vorticity fluctuations near the stationary
disk and in the Couette flow is observed. The level of the vorticity components near
the rotating disk is lower than near the stationary disk, as could be expected from
the levels of the Reynolds stresses in figure 8. Unlike turbulent velocity fluctuations,
the root-mean-square vorticity fluctuations are approximately independent of the
structure of the mean flow. In fact, for high Reynolds numbers the budget of the
turbulent vorticity ω′iω′i is approximately (see e.g. Tennekes & Lumley 1972)

ω′iω′js′ij = ν
∂ω′i
∂xj

∂ω′i
∂xj

(3.3)

where s′ij is the strain rate fluctuations. This is probably the reason why the close
agreement between the individual vorticity components near the stationary disk and
in the Couette flow is not disrupted by the mean-flow three-dimensionality.

Figure 11(a) shows the turbulent kinetic energy k from the present simulation and
in the plane Couette flow simulation by Bech et al. (1995). The tangential friction
velocity uθτ in table 1 is used for the normalization of the rotor–stator flow. There is a
remarkable similarity between the k-profile on the stator side and in the Couette flow.
However by comparing the individual turbulence intensities this similarity is lost, in
contrast to the individual vorticity components displayed in figure 10. The reason for
this is naturally that the mean velocity field plays an essential role in the production
of the velocity fluctuations.

The magnitude τ of the shear stress vector in planes parallel with the disks is

shown in figure 11(b). For the disk flow τ = (u′θu′z
2

+ u′ru′z
2
)1/2, while for the Couette

flow τ equals the only non-zero shear stress; τ exhibits a maximum about z+
rel ≈ 30

at the rotor side, whereas τ increases monotonically from the wall to a constant
level on the stator side and in the Couette flow. For the disk boundary layers τ is
substantially reduced compared to the Couette flow. In figure 11(b) the magnitude
τtot of the total shear stress vector (ν∂Uθ/∂z − u′θu′z , ∂Ur/∂z − u′ru′z) is also presented.
The components refer to the tangential and radial directions, respectively. For the
Couette flow the Reynolds-averaged Navier–Stokes equations can be integrated to
give a constant total shear stress τtot = ν∂U/∂y − u′v′ = u2

τ . The magnitude of the
total shear stress in the rotor–stator flow is reduced below this constant level. The
non-zero radial mean velocity component leads to non-zero advection terms in the
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averaged Navier–Stokes equations, which in turn reduce the level of the total shear
stress away from the walls. The structural parameter a1 = τ/2k in figure 12 shows
the relative significance of τ. Typically a1 = 0.15 in a wide range of two-dimensional
turbulent boundary layers. For the Couette flow the structural parameter reaches 0.15
at y+ ≈ 70. For the three-dimensional boundary layers a1 is reduced compared to
the Couette flow and reaches a maximum of approximately 0.13 at y+ ≈ 100. This
reduction of a1 indicates that the turbulence in the rotor–stator flow is less efficient in
extracting turbulence energy from the mean flow field. In addition, turbulence models
which implicitly or explicitly assume that a1 = 0.15 will inevitably tend to fail when
applied to this flow.

Another feature of three-dimensional turbulent boundary layers is that the direction
of the shear stress vector in planes parallel with the wall is not generally aligned
with the mean velocity gradient vector. In cylindrical coordinates these vectors are
(u′θu′z, u′ru′z) and (∂Uθ/∂z, ∂Ur/∂z) where the components are in the tangential and
radial direction. Turbulence models which rely on the assumption of an isotropic eddy
viscosity will face problems when the misalignment between these vectors is large. In
figure 13 the shear stress angle γτ = arctan [u′ru′z/u′θu′z] and the mean gradient angle

γg = arctan [(∂Ur/∂z)/(∂Uθ/∂z)] are shown; γτ and γg are the angles which (u′θu′z, u′ru′z)
and (∂Uθ/∂z, ∂Ur/∂z) make with the unit vector in the tangential direction. In non-
stationary 3DTBLs the lag between γg and γτ can be quite large (more than 50◦ in
e.g. Coleman et al. 2000 and Le 1999). In stationary boundary layers the difference
between γg and γτ is generally smaller. Near the disks γg is smaller than γτ, while the
situation is reversed further out. The greatest difference between γg and γτ is 18◦ in
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the present study. The errors which may arise from an assumption of eddy-viscosity
isotropy could therefore be tolerable, at least from an engineering point of view.

3.3. Reynolds stress transport

The Reynolds stress transport equations can be written in tensorial form as

Du′iu′j
Dt

= Pij + Dt
ij + Dν

ij +Πij − εij ,
where

Pij = −(u′iu′k∂Uj/∂xk + u′ju′k∂Ui/∂xk) (production),

Dt
ij = −∂u′iu′ju′k/∂xk (diffusion due to turbulent transport),

Dν
ij = ν∂2u′iu′j/∂xk∂xk (viscous diffusion),

Πij = u′i∂p′/∂xj + u′j∂p′/∂xi (velocity–pressure-gradient correlation),

εij = −2ν∂u′i/∂xk∂u′j/∂xi (dissipation).

The transport equations in cylindrical coordinates can be found in e.g. Littell &
Eaton (1991). The budgets for the turbulent kinetic energy k and the magnitude of the
shear stress vector τ are shown in figure 14. Here, the budgets for the plane Couette
flow from the simulation by Bech et al. (1995) have also been included. The transport
equation for τ is found through the relation

Dτ

Dt
=

1

τ

(
u′θu′z

Du′θu′z
Dt

+ u′ru′z
Du′ru′z

Dt

)
.

The production term in the transport equation for τ is therefore defined as Pτ =
(1/τ)(u′θu′zPθz + u′ru′zPrz) and likewise for the other terms.

Figure 14(a) shows that the terms in the transport equation for k behave quite
similarly in the rotor–stator flow and in the Couette flow. This is particularly the
case for the stator boundary layer and the Couette flow, which had almost identical
kinetic energy profiles (see figure 11). The peak in the production of turbulent energy
is at approximately 11 wall units from the wall for all the profiles.

Since figure 11 reveals that the cause of the reduced parameter a1 is a reduction in
the shear stress vector, it should be possible to observe the reason for this reduction
in the transport equation for τ. But according to figure 14(b), this is not the case.
Since τ is lower in boundary layers near the disks than near the plates in the Couette
flow one would expect that in particular the production and dissipation terms would
reflect this. However, Pτ is higher near the stationary disk than in the Couette flow
at z+

rel & 10 and the dissipation is stronger when z+
rel & 18. The excess production of

τ near the stator is mainly balanced by the diffusion due to turbulent transport. The
differences between the rotating disk and the Couette flow is also smaller than what
could be expected from figure 11(b). These budgets do therefore not reveal the cause
of the reduced level of the shear stress near the disks.

4. Coherent structures
In order to try to understand the role played by the mean-flow three-dimensionality

in the reduction of the magnitude of the shear stress vector, the focus of atten-
tion is now on the coherent vortical structures in the near-wall region. Previously,
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conditional sampling techniques have been used in studying coherent structures in
three-dimensional boundary layers. Littell & Eaton (1994), Kang et al. (1998), Le
et al. (1999) and Wu & Squires (2000) conditioned on strong ejections and sweeps
to extract information on modifications of coherent structures caused by the three-
dimensionality. When triggering on velocity or stress signals, conditional averaging
will always tend to smear out the averaged structures. With the objective to reduce
this smearing effect, coherent structures are here obtained by ensemble averaging in-
stantaneous vortices identified by the vortex definition suggested by Jeong & Hussain
(1995). They defined a vortex as a connected region of negative λ2, which is the second
largest eigenvalue of the tensor sikskj + rikrkj where sij ≡ (ui,j + uj,i)/2 is the strain rate
and rij ≡ (ui,j−uj,i)/2 is the rotation tensor. This vortex definition essentially captures
localized pressure minima in the plane normal to the vortex axis. Jeong et al. (1997)
showed that this vortex definition works satisfactorily in a turbulent channel flow. In
the present investigation structures in the near-wall region, i.e. z+

rel < 50, are in focus.
As described in the introduction, the structures in this region in two-dimensional
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Figure 15. Isosurface plot (top view) of λ2 = −0.02 in the region 0 < z+
rel < 50 near the rotating

disk. Light (dark) shading represents Case 1 (Case 2). Tickmarks are 200 wall units apart. The
tangential mean velocity in the rotating coordinate system is from left to right.
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Figure 16. Cross-correlation of −λ2 and ——–, |ω′θ|; · · · · · ·, |ω′r|; −−−, |ω′z |. Thin lines are near
the rotor, thick lines near the stator.

flows are highly elongated vortices in the streamwise direction which are creating
high- and low-speed streaks. Littell & Eaton (1994) hyphothesized that the coherent
structures in their 3DTBL over a rotating disk were similar to the structures found
in 2DTBLs. Wu & Squires (2000) compared different two-point spatial correlations
deduced from their large-eddy simulation of rotating disk flow with measurements
in 2DTBLs and concluded that there were indeed structural similarities between the
two types of flows.

Figure 15 shows the isosurface λ2 = −0.02 near the rotating disk. Light and dark
shading represents Case 1 and Case 2 vortices, respectively, distinguished by the sign
of the tangential vorticity, cf. figure 1. This isosurface plot shows elongated structures
nearly aligned in the tangential direction, having a typical length of about 200 wall
units. Case 1 vortices tend to tilt outwards, while Case 2 vortices are more aligned in
the tangential direction. This significant difference in the degree of alignment of Case
1 and Case 2 vortices is obviously an effect of the crossflow.

The normalized cross-correlations between −λ2 (since the vortex is associated with
negative λ2) and the magnitude of each of the components of the vorticity fluctuations
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are shown in figure 16. In the near wall-region 10 < z+
rel < 50 the correlation between

−λ2 and |ω′θ| is significantly higher than between −λ2 and the other two vorticity
components. These cross-correlations therefore support the conclusion drawn from the
instantaneous flow field visualized in figure 15, namely that the structures are aligned
in the streamwise direction. Even closer to the disks (z+

rel < 10) these correlations
become strongly negative, probably due to the high vorticity near the walls caused
by the no-slip condition. When the distance from the disks is large (z+

rel > 50), the
differences between the three cross-correlations are substantially reduced.

Motivated by the instantaneous vortex structures displayed in figure 15 and the
cross-correlations in figure 16, elongated vortical structures nearly aligned in the
tangential direction are further explored. After detection the detected structures are
ensemble averaged. The detection and averaging are based on the scheme which
Jeong et al. (1997) applied in identifying coherent structures in the near-wall region
in turbulent channel flow. This procedure consists of three steps: (I) Detection
of vortical structures by the λ2-definition. The sign of the vortex is given by the
streamwise component of the vorticity. (II) Ensemble-averaging structures of the
same sign of rotation by aligning the mid-point of their streamwise length. The
structures are required to have a streamwise length of at least 130 wall units in
the region 10 < z+

rel < 40. (III) Shifting of the alignment point to maximize the
cross-correlation between the individual structures and the ensemble-averaged field.

The total number of identified vortices of both signs of rotation, independent of
tangential length, is found to be roughly equal. However, the number of Case 1
vortices of large tangential extent exceeds the number of long Case 2 vortices. This
difference is more pronounced near the rotating disk than at the stationary disk.
Therefore the numbers of Case 1 and Case 2 vortices included in the respective
ensemble averages are not equal. Near the rotating disk the ensemble compromised
179 Case 1 and 101 Case 2 instantaneous structures. The corresponding numbers at
the stator side are 68 and 60. The difference in the total numbers of identified vortices
near the rotor and the stator is mainly due to the different Reτ at the two disks,
cf. table 1. The relative importance of the ensemble-averaged coherent structures
can be seen by considering the fraction of the total examined area covered by the
coherent structures. This fraction, defined as (total number of accepted vortices) ×
(area of projection of coherent structure into the r, θ-plane)/(total examined r, θ-
area), turns out to be approximately 0.15 near both the rotor and the stator. The
ensemble-averaged structures can therefore be considered as an important feature of
the near-wall regions at the rotating and the stationary disks.

In the following presentation the origin (∆r,∆θ) = (0, 0) in the plane parallel to
the disks is defined to be the alignment point. The ensemble average is based on a
database consisting of 12 instantaneous flow fields. The individual flow fields were
separated in time by 71 and 46 inner time units (ν/u2

θτ) near the rotor and stator
sides, respectively. All variables are expressed in wall units.

4.1. Structures on the rotor side

To facilitate comparisons with conventional boundary layers, in which the streamwise
mean velocity increases monotonically with the wall distance, the tangential velocity
in this section is referenced to a coordinate system attached to the rotating disk.
Isosurface plots of λ2(〈ui〉) for the educed coherent structures with negative ωθ (Case
1) and positive ωθ (Case 2) are presented in figure 17. The brackets 〈 〉 indicate
ensemble-averaged quantities, and the argument 〈ui〉 means that λ2 is calculated from
the averaged field. The coherent structures in Jeong et al. (1997) had an inclination
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Figure 17. Isosurface plots of ensemble-averaged coherent structures near the rotating disk. (a) and
(c) Side and top view of Case 1 coherent vortex. (b) and (d) Side and top view of Case 2 coherent
vortex. In the rotating coordinate system the direction of the mean flow is to the right in these
figures.

angle of about 9◦ in the vertical plane and tilting angles of ±4◦ in the horizontal plane.
Iwatsuki, Iida & Nagano (1999) also found similar inclination and tilting angles of
the turbulence structures in a homogeneous shear flow. In the boundary layer near
the rotating disk the coherent vortices of both signs have an inclination angle of
approximately 10◦. The tilting angle in the horizontal plane is about +15◦ for the
Case 1 vortex and −3◦ for Case 2. The difference in tilting angles is likely to be a
combined effect of the vertical inclination and the radial crossflow. The radial mean
velocity exhibited a maximum at about z+

rel ≈ 20 in figure 6(b). The impact of the
crossflow on the part of the vortices in the immediate vicinity of the disk is therefore
weaker than further away from the disk, thereby explaining why the tilting angles
increase in the positive direction.

In order to examine the interaction and spatial relation between coherent vortices of
opposite sign, Jeong et al. (1997) performed an ensemble averaging with the alignment
point located near the upstream end of the structures. Their motivation for this was
that by aligning the structures at the mid-point, the ends are smeared out. An ensemble
average of the structures near the rotating disk aligned at the upstream end of the
structures left almost no trace of the oppositely signed vortex close to the alignment
point. Compared with the findings of Jeong et al. (1997), the crossflow in the rotor–
stator configuration seems to reduce the inter-vortical alignment found in 2DTBLs.

The coherent velocity fields in the (r, z)-plane through the alignment point are
shown in figure 18. The thick solid lines are contours of −λ2 indicating the position
of the centre of the vortices. The velocities associated with Case 1 and Case 2 vortices
exhibit similar patterns. The peak in positive 〈uθ−Uθ〉 fluctuations is closer to the disk
than the peak in negative fluctuations. This was also observed by Jeong et al. (1997)
near the coherent structures in the two-dimensional boundary layer. However, in
contrast to the observations by Jeong et al. (1997), the positive 〈uθ −Uθ〉 fluctuations
are quite strongly suppressed relative the negative fluctuations. This is especially the
case for the Case 2 coherent vortex.

The radial fluctuations 〈ur −Ur〉 directly reflect the radial velocity induced by the
vortices. At the outboard side of the Case 1 vortex the radial fluctuation is negative
due to transport in the positive z-direction of fluid having low radial mean velocity
into regions with higher radial mean velocity.
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Figure 18. Ensemble-averaged coherent velocities near the rotating disk at ∆θ = 0. (a) and (b)
〈uθ − Uθ〉, Case 1 and Case 2, contour increment 0.6; (c) and (d) 〈ur − Ur〉, Case 1 and Case 2,
contour increment 0.3; (e) and (f) 〈uz − Uz〉 Case 1 and Case 2, contour increment 0.3. Dashed
and solid lines represent negative and positive contours, respectively. Thick solid lines represent
contours of −λ2 and the arrow heads indicate the sense of rotation of the vortices.

Wall-normal velocity fluctuations 〈uz −Uz〉 in figure 18(e, f) tend to be negative in
the region where the circumferential fluctuations are positive and vice versa. At the
centre of the vortices ∂〈uz − Uz〉/∂z is negative. The contour line 〈uz − Uz〉 = 0 is
rotated in the opposite direction to the vortex rotation. The coherent vortices educed
by Jeong et al. (1997) also showed this rotation of the zero-crossing of the wall-normal
fluctuations, which was believed to be caused by the tilting of the coherent structure.
Similar arguments hold here: due to the inclination of the vortices, 〈uθ − Uθ〉 is
negative upstream and positive downstream of the centre of both kind of vortices.
Thus, in the non-rotating coordinate system ∂〈uθ〉/∂θ > 0. The term (1/r)∂r〈ur〉/∂r
in the continuity equation is of marginal importance and therefore ∂〈uz −Uz〉/∂z < 0
near the vortex centres.

Coherent Reynolds stresses are shown in figure 19. As seen from the rotating
coordinate system, an ejection, defined as fluid moving out from the wall, is a Q2
(quadrant 2, uθ < 0, uz > 0) event. Correspondingly, a sweep, defined as inward-
moving fluid, is a Q4 event (uθ > 0, uz < 0). The contours of the primary shear stress
−〈uθ −Uθ〉〈uz −Uz〉 in figure 19(a, b) show the locations of the four types of events.
The most noticeable difference between the Reynolds stresses associated with the
coherent vortices close to the rotating disk and the coherent Reynolds stresses found
by Jeong et al. (1997) is the reduction in the contribution from Q4 events to the shear
stress −〈uθ − Uθ〉〈uz − Uz〉. While the contributions from Q2 and Q4 events to the
primary shear stress were approximately equal in the 2DTBL, the contribution from
Q4 events is only about 50% of the Q2 contribution near the Case 1 vortex and not
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Figure 19. Ensemble-averaged coherent Reynolds stresses near the rotating disk at ∆θ = 0.
Positive and negative contours are represented by solid and broken lines respectively. (a) and (b)
−〈uθ −Uθ〉〈uz −Uz〉, Case 1 and Case 2, contour increment 0.25; (c) and (d) −〈uθ −Uθ〉〈ur −Ur〉,
Case 1 and Case 2, contour increment 0.5; (e) and (f) −〈ur − Ur〉〈uz − Uz〉, Case 1 and Case 2,
contour increment 0.25.

more than 30% of the Q2 contribution near the Case 2 vortex. Since the regions of
negative 〈uz − Uz〉 in figure 18(e, f) do not match the regions of positive 〈uθ − Uθ〉
in figure 18(a, b), small regions of negative −〈uθ − Uθ〉〈uz − Uz〉 stress exist. These
Q1 (uθ > 0, uz > 0) and Q3 (uθ < 0, uz < 0) events contribute only modestly to the
Reynolds-averaged shear stress.

Contours of the shear stress −〈uθ − Uθ〉〈ur − Ur〉 are shown in figure 19(c, d). A
positive contribution to the corresponding Reynolds stress from the coherent vortex
of one sign was compensated by a negative contribution from the vortex of opposite
sign in the study by Jeong et al. (1997). In the present flow, the distribution of
positive and negative −〈uθ −Uθ〉〈ur −Ur〉 near the two vortices indicates that the net
contribution from both vortices is positive near the rotating disk and negative away
from the disk, i.e. in accordance with the result in figure 8(f).

The spatially averaged contribution to the stress −〈ur − Ur〉〈uz − Uz〉 from the
individual coherent vortices is quite small due to the alternating pattern of positive
and negative regions around each vortex, as can be seen in figure 19(e, f). It is difficult
to see from these contour plots how the coherent vortices contribute to the small
shear stress component u′ru′z in figure 8(d).

4.2. Structures on the stator side

In the presentation of flow structures near the stationary disk, uz is defined to
be positive in the direction away from the disk. The radial velocity component is
inverted, i.e. ur → −ur , in order to make ur positive in the direction of the crossflow.
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Figure 20. Isosurface plots of the ensemble-averaged coherent structures near the stationary disk.
(a) and (c) Side and top view of Case 1 coherent vortex. (b) and (d) Side and top view of Case 2
coherent vortex.
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Figure 21. Ensemble-averaged coherent velocities near the stationary disk at ∆θ = 0: (a) and (b)
〈uθ − Uθ〉 Case 1 and Case 2, contour increment 0.75; (c) and (d) 〈ur − Ur〉 Case 1 and Case 2,
contour increment 0.375; (e) and (f) 〈uz −Uz〉 Case 1 and Case 2, contour increment 0.375.

These precautions facilitate comparisons of the coherent structures and accompanying
velocities and stresses near the stator with the corresponding structures near the rotor
side.

Isosurface plots of λ2(〈ui〉) are given in figure 20. As for the coherent structures
near the rotating disk, the inclination angle in the vertical plane is about 10◦ for both
kinds of vortices. The tilting angle in the horizontal plane is +15◦ for the Case 1
vortex and about 0◦ for Case 2.
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Figure 22. Coherent Reynolds stresses near the stationary disk at ∆θ = 0: (a) and (b)
−〈uθ −Uθ〉〈uz −Uz〉 Case 1 and Case 2, contour increment 0.375; (c) and (d) −〈uθ −Uθ〉〈ur −Ur〉
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An ensemble average with alignment point near the upstream end of the structures
was also obtained near the stationary disk to gain insight into the amount of alignment
between the vortices. Like for the structures near the rotating disk, the inter-vortical
alignment is reduced as compared to that in two-dimensional flows.

It is interesting to see that the coherent velocities near the stationary disk (figure
21) show patterns that are quite similar to the coherent velocities near the rotating
disk. Especially noteworthy is the observation that the region with positive 〈uθ −Uθ〉
is substantially smaller in size and weaker in magnitude than the region of negative
〈uθ −Uθ〉.

The similarity between the coherent velocities implies that the coherent Reynolds
stresses in figure 22 are also similar to the stresses near the rotating disk. The
contribution from Q4 events to the spatial averaged −〈uθ − Uθ〉〈uz − Uz〉-stress is
small compared to the contribution from Q2 events, both for Case 1 and Case 2
coherent vortices.

4.3. Conditional-averaged quadrant analysis

In their study of the 3DTBL over a rotating disk Littell & Eaton (1994) measured
conditionally-averaged velocities to gain insight into the near-wall coherent structures.
Kang et al. (1998) performed a similar experiment on the rotating-disk boundary layer
and examined the velocity fields near strong sweeps and ejections. By performing a
quadrant analysis of the conditional-averaged fields they concluded that asymmetries
in the radial direction observed by Littell & Eaton (1994) were caused by other events
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Figure 23. Conditional averages of u′θu′z at z+
rel = 20 near the rotor. (a) Strong ejections and (b)

strong sweeps. −−�−−−, Total. Contribution from −−−, Q1; ——–, Q2; · · · · · ·, Q3; − ·−, Q4.

than those related to coherent eddies, and that Case 1 and Case 2 vortices were
symmetric like in two-dimensional boundary layers.

Here, quadrant analysis is applied to conditional-averaged shear stress near strong
sweeps and ejections. The measurement locations of Littell & Eaton (1994) and Kang
et al. (1998) were at z+ ' 115 and z+ ' 90, respectively, while the present detection
point is at z+

rel = 20. This choice is motivated by the cross-correlations in figure 16,
which show that the structures in the rotor–stator flow lose their strong tendency to
be aligned in the tangential direction at larger wall-normal distances, thus making
the interpretation of the conditional averages more difficult. Here, a strong sweep is
defined as −u′θu′z > 3u′θ,rmsu′z,rms and u′z < 0, while a strong ejection is detected when
−u′θu′z > 3u′θ,rmsu′z,rms and u′z > 0.

The conditional averages near the rotor are given in figure 23. On each side of
the primary peaks, caused by the strong sweeps and ejections, there is a smaller
peak. Littell & Eaton (1994) interpreted these secondary peaks as traces of a pair
of streamwise vortices generating the strong sweeps and ejections. Kang et al. (1998)
refined this interpretation on the basis of their quadrant analysis and postulated that
only positive shear-stress-producing events (Q2 and Q4) are signatures of streamwise
vortices. On the left side of the central peak in figure 23(a) the secondary peak is
associated with a Case 1 vortex and the secondary peak to the right is associated with
a Case 2 vortex. The asymmetry in the total −u′θu′z stress around ∆r = 0 is mainly
caused by Q4 events. Since the peak is highest on the left side, it can be concluded that
Case 1 vortices are responsible for generating most of the strong ejections. Following
the same line of argument, it is found that Case 1 vortices are also the primary source
of generation of strong sweeps. Some further support for this conclusion is provided
by Lygren & Andersson (2000).

The conclusion to be drawn from the conditional averages near the stationary disk
in figure 24, is that Case 1 vortices contribute more to the Reynolds shear stress than
Case 2 vortices. The total shear stress near an ejection is nearly symmetric. However,
the quadrant analysis reveals that the peak from Q4 events is stronger on the left
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Figure 24. Conditional averages of u′θu′z at z+
rel = 20 near the stator. (a) Strong ejections and (b)

strong sweeps. −−�−−−, Total. Contribution from −−−, Q1; ——–, Q2; · · · · · ·, Q3; − ·−, Q4.

side of the primary peak, thereby implying that Case 1 vortices generate slightly more
ejections than Case 2 vortices.

When the strength and spatial extent of the coherent stresses are taken into account,
the observations from the conditional averages near both disks are in agreement with
the coherent stresses in figures 19 and 22. The asymmetries in these conditional
averages can also be explained by the difference in the numbers of large Case 1 and
Case 2 vortices, as described in the introductory part of § 4.

5. Summary and concluding remarks
The flow in an angular section between a rotating and a stationary disk has been

simulated numerically as an idealization of flows encountered in turbomachinery.
Mean velocities and the turbulent stresses were compared to data from an experiment
by Itoh (1995). The component intensities of the turbulence near the rotor were higher
in this simulation than in the experiment. The reason for this is probably either that
the present study concerned infinite disks while in the laboratory experiment the
disks were enclosed by an outer shroud, or that the radial velocity component in the
experiment transports fluid from the laminar region near the axis of rotation into
the fully turbulent region further out. To rule out any Reynolds number effects a
shorter simulation with Rerm = 4.6× 105 was performed. This simulation did not give
significantly different results compared to the simulation at Rerm = 4.0× 105.

The wall friction at the rotating disk was substantially higher than on the stationary
disk. It was moreover observed that in both the boundary layers near the rotor and
near the stator, the shear stress vector and the mean flow gradient vector were more
aligned than in non-stationary 3DTBLs. This modest misalignment indicates that
closure models based on an isotropic eddy viscosity might have the potential to
produce reliable results for this flow. The ratio of the shear stress vector magnitude
to the turbulent kinetic energy was lower than the level usually observed in two-
dimensional boundary layers. This reduction is commonly found in 3DTBLs, and has
to be accounted for in turbulence models aimed at three-dimensional flow predictions.
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Coherent structures in the three-dimensional boundary layers near the rotor and
stator have been studied by means of ensemble averages of instantaneous vortices,
and a conditional-averaged quadrant analysis. The instantaneous vortices included
in the ensemble average were detected by the λ2-criterion. Only structures with
tangential extent exceeding 130 wall units were considered. An advantage of this
detection scheme is that the smearing of the coherent structures is modest compared
to sampling based on e.g. quadrant 2 and quadrant 4 detections.

The origin of the crossflow near the rotating disk is an imbalance between the cen-
trifugal and pressure forces, while the crossflow near the stationary disk is pressure-
driven. Nevertheless, the ensemble-averaged coherent structures in the boundary layers
near the rotating and stationary disks were remarkably similar to each other. The ob-
served differences between the present coherent structures and those found in 2DTBLs
are therefore most likely caused solely by the three-dimensionality of the mean flow.

The coherent structures in the region considered (z+
rel < 50) were highly elongated

and nearly aligned in the streamwise direction. They were inclined 10◦ in the ver-
tical plane. In the horizontal plane the Case 1 coherent vortex was tilted 15◦ while
Case 2 vortices were more closely aligned with the tangential direction. The array
of alternating-signed vortices overlapping in the streamwise direction, as found in
the two-dimensional flow by Jeong et al. (1997), is broken by the crossflow. Another
noticeable difference between the present coherent structures and the ones found
by Jeong et al. (1997) is that the sweeps which are generated by the present vor-
tices are much weaker than the ejections. This phenomenon can be associated with
the ‘stalls’ and ‘flip-overs’ of vortices observed by Chiang & Eaton (1996) in their
flow-visualization experiment. They found that the crossflow prevented some of the
ejections caused by the vortices from rolling over and creating sweeps, thereby leading
to stronger ejections and weaker sweeps.

Finally, a quadrant analysis of the conditional-sampled shear stress −u′θu′z around
strong sweeps and ejections showed that the asymmetries which appeared were
caused by Reynolds-stress-producing events. This supports the results by Littell &
Eaton (1994) and is in contrast to conclusions arrived at by Kang et al. (1998). The
in-depth exploration of the coherent structures in the rotor–stator flow suggests that
the reason for the reduction of the structural parameter a1 is the weakening of the
stress production caused by the sweeps by the large-scale coherent structures of both
signs of rotation.
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